1H, 13C, 15N resonance assignment of human YAP 50–171 fragment
نویسندگان
چکیده
Yes associated protein (YAP) is an intrinsically disordered protein that plays a major role in the Hippo pathway, regulating organ size, cell proliferation, apoptosis, and is associated with cancer development. Therefore, the binding between YAP and TEAD is an interesting target for cancer therapy. The TEAD binding domain of YAP was mapped to protein residues 50-171. To obtain further structural insights into this 12 kDa segment of YAP, we report a backbone and a partial sidechain assignment of recombinant YAP 50-171.
منابع مشابه
NMR with 13C, 15N-doubly-labeled DNA: the Antennapedia homeodomain complex with a 14-mer DNA duplex.
Nearly complete 1H, 13C and 15N NMR assignments have been obtained for a doubly labeled 14-base pair DNA duplex in solution both in the free state and complexed with the uniformly 15N-labeled Antennapedia homeodomain. The DNA was either fully 13C, 15N-labeled or contained uniformly 13C, 15N-labeled nucleotides only at those positions which form the protein-DNA interface in the previously determ...
متن کاملTROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins.
The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below approximately 25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, th...
متن کامل1H, 15N, 13C, and 13CO assignments of human interleukin-4 using three-dimensional double- and triple-resonance heteronuclear magnetic resonance spectroscopy.
The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of greater than 95% f...
متن کاملTwo-dimensional nuclear magnetic resonance spectroscopy.
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton dis...
متن کاملAssignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditional...
متن کامل